Writing Python Simulations

Puzzle #1: Find the expected output of the following code:

<table>
<thead>
<tr>
<th>(a):</th>
<th>Python:</th>
</tr>
</thead>
</table>
| | red = 4
 if red < 3:
 red = 5
 if red > 3:
 red = 3
 print(f"Value of red: {red}") |

Description of Output:

<table>
<thead>
<tr>
<th>(b):</th>
<th>Python:</th>
</tr>
</thead>
</table>
| | coin = random.choice(['head', 'tail'])
 if coin == 'head':
 print('You won!')
 else:
 print('You lost.') |

Description of Output:

<table>
<thead>
<tr>
<th>(c):</th>
<th>Python:</th>
</tr>
</thead>
</table>
| | data = []
 for i in range(1000):
 guess = random.randint(1, 10)
 if guess == 7:
 d = {'win': 1}
 else:
 d = {'win': 0}
 data.append(d)
 df = pd.DataFrame(data) |

Description of Program:
Puzzle #2: Write the Python code to simulate 100,000 generic tests to test someone’s relation to Taylor Swift. The test has the following parameters: There is a 99% probability that an individual related to Taylor Swift will get a positive result (“true positive”). There is a 6% probability that an individual NOT related to Taylor Swift will get a positive result (“false positive”). About 1% of the world population is related to Taylor Swift.

<table>
<thead>
<tr>
<th>Algorithm:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a): In our simulation of 100,000 tests, how many people were actually related to Taylor?</td>
</tr>
</tbody>
</table>

| | |
| --- | |
| **(b):** In our simulation of 100,000 tests, how many people tested to be related to Taylor? |

| | |
| --- | |
| **(c):** How many people tested positive to be related, but weren’t actually related? |